Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\text {a* }}$ Bernhard Witulski ${ }^{\text {b }}$ and Henning Hopf ${ }^{\text {b }}$
 ${ }^{\text {a }}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
 Correspondence e-mail:
 jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.117$
Data-to-parameter ratio $=12.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

[2.2]Basketenoparacyclophane 18,20-dicarbonitrile

The title compound, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2}$, displays some release of the usual strain in [2.2]paracyclophanes (e.g. the bridge bonds are no longer lengthened), associated with the lengthening of the bridgehead contact C3‥C14. However, the effect is not uniform; the basketene ring system introduces strain of its own (e.g. lengthened single bonds, wide angles at the corresponding bridge atoms).

Comment

When excess cyanoacetylene is heated in benzene solution at 433 K in a sealed ampoule, it [2+2]-cyclodimerizes to yield the highly reactive dicyanocyclobutadiene, which can be trapped by various diene systems, including those with aromatic character. Thus [2.2]paracyclophane and dicyanocyclobutadiene react to form four cycloadducts, which we have characterized (Witulski et al., 1990). In these Diels-Alder adducts, two olefinic double bonds are oriented parallel to each other and in such close proximity that intramolecular photo-addition should be possible. This has now been confirmed for the dinitrile (1), which undergoes photo-addition to form compound (2) (see Scheme). The structure assignment of this novel birdcage hydrocarbon system is based on spectral data (Witulski, 1992) and the structure reported here (Fig. 1).

The unreacted ring (C11-16) displays the usual paracyclophane distortion, in that the bridgehead atoms C11 and C14 lie 0.154 (3) and 0.142 (3) \AA, respectively, out of the plane of the other four atoms (r.m.s. deviation $0.005 \AA$). There is elsewhere some release of the usual paracyclophane strain, because the bridgehead contact C3 . . C14 is lengthened to 3.023 (2) \AA [cf. C6. . C11 2.798 (2) Å]. Similarly, the bridge single bonds C1C 2 and $\mathrm{C} 9-\mathrm{C} 10$, usually lengthened to $c a 1.58-1.59 \AA$ in [2.2]parayclophanes (e.g. Jones et al., 2002), revert to normal lengths. However, the angles in the bridges, usually widened to ca 112°, do not show a consistent narrowing to normal $s p^{3}$ values; the angle at C 10 does narrow, that at C 1 is essentially unaffected, and those at C9 and C2 widen much further (Table 1). The latter effect may reasonably be ascribed to strain from

Received 23 May 2002 Accepted 27 May 2002 Online 8 June 2002

Figure 1
The molecule of the title compound (2) in the crystal. Ellipsoids represent 30% probability levels. H atom radii are arbitrary.
the basketene ring system, $c f$. the very narrow angle C5-C6C7 $112.85(14)^{\circ}$ at the $s p^{2}$ atom C6 [the localized double bond C5-C6 displays a normal length of 1.329 (2) Å]. Further evidence for this is provided by the lengthening of several basketene $\mathrm{C}-\mathrm{C}$ single bonds to $c a 1.57-1.58 \AA$, the longest being C $3-\mathrm{C} 4$ of 1.585 (2) \AA (Table 1).

There are no noteworthy intermolecular contacts and, in particular, none of the type $\mathrm{C}-\mathrm{H} \cdots C g$, where $C g$ represents the centroid of a cyclophane ring. We recently observed such contacts in cyclophane derivatives (Jones et al., 2002), with $\mathrm{H} \cdots C g$ ca $2.7 \AA$ and acceptable linearity. Here, the only potential candidate would be $\mathrm{H} 17 \cdots C g(\mathrm{C} 12,13,15,16)$, with $\mathrm{H} \cdots C g 2.95 \AA$, but a narrow angle $\mathrm{C}-\mathrm{H} \cdots C g 124^{\circ}$.

Experimental

Irradiation of (1) in toluene with a 450 W mercury high pressure lamp for 5 h under nitrogen leads to (2) in 73% yield (after silica-gel chromatography and fractional crystallization from chloroform/ pentane).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \\
& M_{r}=310.38 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=6.6094(14) \AA \\
& b=17.251(3) \AA \\
& c=13.910(3) \AA \\
& \beta=97.272(16)^{\circ} \\
& V=1573.3(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Nicolet $R 3$ diffractometer
ω scans
Absorption correction: none
5639 measured reflections
2760 independent reflections
2175 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-20 \rightarrow 20 \\
& l=-16 \rightarrow 0
\end{aligned}
$$

3 standard reflections every 147 reflections intensity decay: none

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0592 P)^{2}\right. \\
& \quad+0.3931 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.117$
$S=1.03$
2760 reflections
217 parameters

H-atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$.

C1-C2	$1.539(2)$	C6-C9	$1.521(2)$
C3-C8	$1.562(2)$	C $7-\mathrm{C} 8$	$1.560(2)$
C3-C19	$1.577(2)$	C $8-\mathrm{C} 20$	$1.576(2)$
C3-C4	$1.585(2)$	C $9-\mathrm{C} 10$	$1.554(2)$
C4-C5	$1.485(2)$	C17-C19	$1.548(2)$
C4-C17	$1.551(2)$	C17-C18	$1.562(2)$
C5-C6	$1.329(2)$	C18-C20	$1.578(2)$
C6-C7	$1.499(2)$	C19-C20	$1.552(2)$
C14-C1-C2	$111.63(14)$	C12-C11-C16	$117.37(17)$
C3-C2-C1	$118.93(14)$	C15-C14-C13	$117.46(17)$
C2-C3-C8	$120.83(13)$	C19-C17-C	$90.84(12)$
C2-C3-C19	$121.49(13)$	C19-C17-C18	$90.82(12)$
C8-C3-C19	$89.36(11)$	C4-C17-C18	$108.58(12)$
C2-C3-C4	$121.15(14)$	C21-C18-C17	$118.16(14)$
C8-C3-C4	$107.23(12)$	C21-C18-C7	$118.29(14)$
C19-C3-C4	$88.58(11)$	C17-C18-C7	$109.73(12)$
C5-C4-C17	$115.02(13)$	C21-C18-C20	$125.62(14)$
C5-C4-C3	$118.37(13)$	C17-C18-C20	$88.79(12)$
C17-C4-C3	$87.10(11)$	C7-C18-C20	$90.18(11)$
C6-C5-C4	$117.09(14)$	C17-C19-C20	$90.25(12)$
C5-C6-C7	$112.85(14)$	C17-C19-C3	$87.50(11)$
C6-C7-C8	$118.79(13)$	C20-C19-C3	$90.59(12)$
C6-C7-C18	$114.59(13)$	C22-C20-C19	$128.15(14)$
C8-C7-C18	$86.52(11)$	C22-C20-C8	$125.85(14)$
C7-C8-C3	$110.88(12)$	C19-C20-C8	$89.76(11)$
C7-C8-C20	$90.68(11)$	C22-C20-C18	$124.57(14)$
C3-C8-C20	$90.27(11)$	C19-C20-C18	$90.13(12)$
C6-C9-C10	$115.64(15)$	C8-C20-C18	$85.81(11)$
C11-C10-C9	$107.84(14)$		

H atoms were included at calculated positions, using a riding model. $U_{\text {iso }}(\mathrm{H})$ values were fixed at 1.2 times the $U_{\text {eq }}$ of the parent atom.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Jones, P. G., Hillmer, J. \& Hopf, H. (2002). Acta Cryst. C58, o301-o304.
Nicolet (1987). P3 and XDISK. Nicolet XRD Corporation, Cupertino, California, USA.

organic papers

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.

Witulski, B. (1992). PhD Thesis, Technical University of Braunschweig, Germany.
Witulski, B., Ernst, L., Hopf, H. \& Jones, P. G. (1990). Chem. Ber. 123, $2015-$ 2022.

